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Shil’nikov homoclinic dynamics and the escape
from roll autorotation in an F-4 model

By M. H. Lowenberg1 and A. R. Champneys2

1Department of Aerospace Engineering, 2Department of Engineering Mathematics,
University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, UK

An investigation is undertaken into the nonlinear dynamics of an eighth-order model
for the F-4J Phantom fighter aircraft in a neighbourhood of its autorotation flight
regime. This regime is characterized by high roll rates with no roll-control inputs.
It is found that the basic state goes unstable via a supercritical Hopf bifurcation
as the value of the stabilator (the pitch-axis control surface) is increased (i.e. the
control column is pushed forward). The ensuing stable limit-cycle behaviour is itself
destroyed at a higher stabilator value in a certain homoclinic bifurcation, first anal-
ysed by Shil’nikov. A careful numerical continuation analysis is performed by using
spline interpolation of the tabulated data in the model. The limit cycle is found to
reach infinite period along a complex wiggly bifurcation curve, as predicted by the
theory of Shil’nikov homoclinic orbits. Several period-doubling and secondary-Hopf
(torus) bifurcations are discovered. Direct simulation of the aircraft dynamics, by
using linear interpolation of the data, is shown to give good agreement with the con-
tinuation results. It is found that the homoclinic bifurcation marks an escape from
autorotation. That is, varying stabilator slowly through the critical value results in
a jump from oscillatory autorotation to symmetric flight. Possible implications of
these results for other flight phenomena are discussed.

Keywords: flight dynamics; nonlinear dynamics; global bifurcation;
numerical continuation; autorotation

1. Introduction

Roll-autorotation (henceforth called autorotation for short) is a motion of the rigid-
body dynamics of an aircraft that is predominantly a rapid rotation about the longi-
tudinal axis, existing even in the absence of any roll-control (aileron) input. It often
takes the form of a steady motion in which the aerodynamic moments—dominated
usually by regions of stalled flow which are different on the two wings—are balanced
by the inertial coupling that increases in strength as rotation rates build up. In this
sense, it is similar to a spin but, since it develops at low angles of attack, there is
usually ample control power available to effect a recovery.

This paper is concerned with a detailed analysis of autorotation in a realistic
aircraft model, upon varying a pitch-axis control. The methodology used is that
of bifurcation theory, for which non-specialists are referred to Glendinning (1996)
or Kuznetsov (1995) for modern introductions. It will be found that the steady
behaviour gives rise via a Hopf bifurcation to a mildly oscillatory form of autoro-
tation. This periodic motion is abruptly destroyed in a global bifurcation caused
by a homoclinic orbit of the kind first analysed by Shil’nikov (1965, 1970); see also
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2242 M. H. Lowenberg and A. R. Champneys

Glendinning & Sparrow (1984), Gaspard et al . (1984), Tresser (1984) and Deng
(1993). Here, a homoclinic orbit, which can be thought of as an infinite-period limit
cycle, is a solution that connects a saddle-focus equilibrium to itself. We shall seek
to assess possible aeronautical implications of this method of destruction of stable
autorotation behaviour. We shall also bear in mind the more general, potential appli-
cation, in aircraft models, of these ideas to recovery from other undesirable periodic
motion (e.g. spin).

Earlier work by Goman & Khramtsovsky (1997) briefly discusses an autorota-
tion mode in a simplified model—consisting of three ordinary differential equations
(ODEs) with constant coefficients—of a hypothetical swept-wing fighter at high alti-
tude and supersonic speed. As in the current study, autorotation is initially steady
and, as the control parameter is increased, a Hopf bifurcation appears followed by
a stable limit cycle. The periodic orbit then disappears in a homoclinic connection
with a saddle point. This situation is a useful ‘textbook-type’ example of a homoclinic
bifurcation. However, in that paper, which is mainly concerned with stability-region
analysis, there is no investigation into the details of the bifurcation. As far as the
present authors are aware, homoclinic connections in full aircraft models have not
received any attention in the literature.

The aircraft model used in this study is a mathematical representation of the
McDonnell-Douglas F-4J Phantom (Mitchell et al . 1980) via a system of eight cou-
pled ODEs with non-constant aerodynamic characteristics specified as data. This F-4
model has been used extensively by the first author in studies of nonlinear aircraft
behaviour (Lowenberg 1991), and more recently for novel developments associated
with bifurcation tailoring (Lowenberg, this issue). Although it does not represent
a current state-of-the-art fighter aircraft in many respects, it has the advantage of
being a relatively simple model, the dynamics of which is well understood.

The rest of the paper is outlined as follows. In § 2, the model equations used are
given. In § 3, the results of a numerical bifurcation analysis on a smoothed version
of the model are presented, using the continuation software AUTO (Doedel et al .
1991a, b, 1997). The resulting wiggly bifurcation curve of periodic orbits is shown to
have excellent agreement with the predictions of Shil’nikov homoclinic bifurcation
theory. In § 4, simulation results on the model with non-smooth data are then pre-
sented, and the homoclinic orbit is found to play an organizing role in the transition
from autorotation to trim symmetric flight. Finally, the wider implications of these
results are discussed in § 5.

2. The model

A standard form of the equations of motion for rigid-body aircraft in six-degrees-of-
freedom (DOF) flight is adopted. We follow the usual approximations for stability
and control work: Earth fixed in inertial space; curvature and rotation of the Earth
ignored; gravitational acceleration taken as constant; aircraft mass and mass dis-
tribution fixed during the time intervals of concern. Furthermore, we neglect any
moving masses within the airframe (rotating engine components, dynamic effects of
control surface movements). We assume that the aircraft has a plane of symmetry
(left-hand side a mirror image of the right-hand side, so that aerodynamic, inertial
and propulsive loads are also symmetric in this sense, except, of course, when asym-
metric control inputs are applied, namely non-zero rudder and/or aileron). Finally,
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Shil’nikov homoclinic dynamics 2243

the influence of height changes are ignored since they occur very slowly relative to
the aircraft modes of motion.

Applying Newton’s laws to such a system results in a set of eight ODEs, which are
commonly used in open-loop rigid-body flight-dynamics studies. Using a Cartesian-
axis system with origin at the vehicle centre of mass, the equations can be written
as follows:

Ixxṗ = qr(Iyy − Izz) + Ixz(ṙ + pq) + L+ LP, (2.1)

Iyy q̇ = rp(Izz − Ixx) + Ixz(r2 − p2) +M +MP, (2.2)
Izz ṙ = pq(Ixx − Iyy) + Ixz(ṗ− qr) +N +NP, (2.3)

α̇ = q − tanβ(p cosα+ r sinα) +
Zw + ZP

mVT cosβ
, (2.4)

β̇ = p sinα− r cosα+
Yw + YP

mVT
, (2.5)

V̇T =
Xw +XP

m
, (2.6)

φ̇ = p+ q sinφ tan θ + r cosφ tan θ, (2.7)

θ̇ = q cosφ− r sinφ, (2.8)

where

Ixx, Iyy and Izz moments of inertia about the x-, y- and z-body axes;
Ixz a cross-product of inertia;
L, M and N the aerodynamic rolling, pitching and yawing moments

(about the x-, y- and z-axes, respectively) which are,
in general, functions of several state variables and control
parameters (the latter being δa, δr and
δstab in this case);

LP, MP and NP the rolling, pitching and yawing moments induced by the
propulsion system (about the x-, y- and z-axes,
respectively);

m aircraft mass;
p, q and r the roll, pitch and yaw rates (about the x-, y- and z-axes);
VT total flight path velocity;
Xw, Yw and Zw the axial, side and normal aerodynamic forces relative

to flight path (wind) axes, which in general are functions of
the state variables and control parameters;

XP, YP and ZP the axial, side and normal propulsive and gravitational
forces relative to flight path axes;

α and β the angles of attack and sideslip;
δa, δr and δstab the aileron, rudder and stabilator control surface deflections;
φ and θ the bank and pitch orientation angles, respectively.

The system of equations (2.1)–(2.8) can be expressed in the generic form

ẋ(t) = f(x, δ, t), x,f ∈ Rn, δ ∈ Rm, (2.9)

where x is a vector of n state variables (in this case
[
p q r α β VT φ θ

]T),
δ is a vector of m parameters, ẋ is the time derivative of x, and f : Rn × Rm → Rn
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is the vector field (the n nonlinear functions). For this paper δ =
[
δa δstab δr

]T
is a vector containing the three control variables, which we regard as either being
steady parameters or slowly varying prescribed functions of time.

The mass and inertial properties of the F-4 model are represented directly within
equations (2.1)–(2.6), while its aerodynamic characteristics are incorporated within
L, M , N , Xw, Yw and Zw. For the purposes of this paper, the propulsive thrust
force is constant at 60 kN. Note that equations (2.7) and (2.8) are purely kinematic
relationships, which provide the orientation of the aircraft to the gravity vector.

The F-4J model was obtained from Mitchell et al . (1980). This is a constant-Mach-
number version of a larger model assembled from three separate data sources to
represent the full-scale aircraft’s behaviour in air combat manoeuvring. The aerody-
namic reactions are represented within L, M , N , Xw, Yw and Zw in a fairly standard
manner, by using the linear terms of a Taylor series expansion (with respect to the
states and controls) in each case. The coefficients in these expressions (known as
‘stability derivatives’) are, however, not all constants: most are nonlinear functions
of angle of attack, α, and are given in the form of data tables; there is also a term
in the expression for M that is a two-dimensional table in terms of α and β. The
aerodynamic model is regarded as being valid over a range of angles of attack from 0
to 110◦ and a sideslip range of −30 to +30◦ for the aircraft in a clean configuration
(no flap, slat or undercarriage extension).

The functional dependence of the six aerodynamic reactions on state variables and
control parameters for the F-4J model is as follows:

L(VT, α, β, p, r, δa, δr), Xw(VT, α),
M(VT, α, β, q, α̇, δa, δstab), Yw(VT, α, β, δa, δr),
N(VT, α, β, p, r, δa, δr), Zw(VT, α, δstab).

In this study, a slightly modified form of the data tables is used: additional points
were added in order to create a smoother variation of dependent variables. This
ensures that results using linear interpolation (as used in § 4 below) match those
generated by using cubic spline fits (as in § 3). The weight and inertia properties of the
aircraft model correspond to a configuration with partly full internal fuel tanks, an
empty centre-line tank and missile pylons on wing stations two and eight. A complete
listing of all the data used may be found in Lowenberg (1991). For simplicity, the
analysis that follows does not include a stability augmentation system, and no input
is assumed from the rudder and aileron controls (δa = δr = 0). We consider only the
effect of varying stabilator, δstab.

3. Numerical continuation results

In this section we have used a cubic spline interpolation of the data in (2.1)–(2.6)
to define a smooth eighth-order system of ODEs (2.9), with a single free parameter,
δstab. Bifurcation diagrams are computed by using the software AUTO (Doedel et
al . 1997); see Doedel et al . (1991a, b) for the methods used. Specifically, we have
taken the discretization and tolerance constants NTST = 100, NCOL = 4 and
EPSL = EPSU = 1.0× 10−6.

Figure 1 presents the overall details of the bifurcation diagram of equilibrium
solutions of the model (for more details see Lowenberg 1991, and this issue). Note
that, throughout this paper, all angular rates (p, q, r) are in degrees per second,
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Shil’nikov homoclinic dynamics 2245

Figure 1. Overall bifurcation of equilibrium paths: (a) p versus δstab; and (b) α versus δstab.
Solid lines represent stable equilibria, and dashed lines unstable ones. Solid boxes represent Hopf
bifurcation points. Notice from (a) that the two symmetrically related autorotation branches
are stable just to the right of the folds at |p| ≈ 265 (note Hopf bifurcations on these branches
are not depicted due to their proximity to the folds, but see figure 2). In (b) these two branches
are overlaid and occur for low angle of attack α near to the symmetric trim branch.
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2246 M. H. Lowenberg and A. R. Champneys

Figure 2. (a) Bifurcation diagram of equilibria (solid lines stable, dashed lines unstable) and limit
cycles (solid circles stable, hollow circles unstable) close to the fold of the positive autorotation
branch. (b) Projection onto the (p, α)-plane of Hopf point at δstab = −1.96563 (label 1) and
limit cycles at δstab = −1.93829 (label 2), δstab = −1.79101 (label 3), δstab = −1.59989 (label 4),
δstab = −1.41478 (label 5), and an approximation to the homoclinic orbit at δstab = −1.325597
(label 6).

angles (α, β, φ, θ) in degrees and velocity (VT) in metres per second; period T is
given in seconds.

The branch that chiefly concerns us here is the autorotation branch for roll rate
p ≈ 265. Obviously, due to symmetry, the results will apply equally well to the sym-
metrically opposite branch near p = −265. More details of this branch are presented
in figure 2a, from which it can be seen that after a fold at δstab = −2.320 there is
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a short region of stable equilibrium until δstab = −1.966, whereupon a stable limit
cycle is born in a Hopf bifurcation. The shape of a projection of this limit cycle onto
the (p, α)-plane can be seen in figure 2b. The approximate range of oscillation of the
unpresented six variables may be gleaned from figures 6 and 7.

As δstab is increased further to about −1.320, the limit cycle grows in amplitude to
that at label 6 in figure 2b. Before doing so, it undergoes a sequence of bifurcations
which are shown in more detail in figure 3. First, there is an apparently endless
sequence of fold bifurcations of limit cycles corresponding to a Floquet multiplier
passing through unity; see for example Glendinning (1996) and Kuznetsov (1995) for
general information on these and other bifurcations of limit cycles. We also find other
bifurcations, notably period doublings (the creation of an orbit of double the period
via a Floquet multiplier passing through −1) and Neimark–Sacker or secondary-
Hopf bifurcations (the creation of invariant tori composed of quasi-periodic motion
via a complex pair of Floquet multipliers passing through the unit circle). Using the
automatic bifurcation detection functions in AUTO, we have been able to accurately
locate several of these bifurcations on the lower limbs of the curve of periodic orbits,
as indicated in figure 3a, b. These result in windows of stable periodic behaviour
along a branch that is otherwise unstable. However, after the first few folds, AUTO
is unable to detect any additional windows of stability or bifurcations other than
folds. This does not exclude the possibility of self-similar bifurcation structures on
these higher limbs of the wiggly curve with the windows of stability occurring in too
small a parameter interval to be numerically detectable.

A more illuminating way of depicting what is going on along this branch of limit
cycles is to plot the results as period versus parameter, as in figure 4. Here, it is
clear that, although the amplitude of the limit cycle is increasing as the termination
of the branch is approached, the overwhelming feature is that the period appears to
be tending to infinity. This is indicative of a homoclinic orbit, where the limit cycle
collides with a saddle-type equilibrium. Graphs of each component of the limit cycle
for high period (δstab ≈ −1.32) are plotted in figure 5. Here, note that the trajectory
spends a long time in a neighbourhood of

E : (p, q, r, α, β, φ, θ, VT)
= (251.7,−63.30,−22.87,−5.801,−12.97,−109.9,−75.03, 329.4),

which is an equilibrium of the system at this parameter value. This equilibrium is on
the lower, unstable, autorotation branch which joins the stable one at the fold (see
figure 2a).

Using the theory of homoclinic orbits and the linearization at E, we are now in a
position to explain the features of the wiggly curve displayed in figure 4 and their
implications for the observable dynamics. A good reference for the information we
require is Glendinning & Sparrow (1984).

Linearizing at E for δstab = −1.32, we find eigenvalues

λ1 = 0.7684, −λ2 ± iω2 = −0.0291± 4.548i,
−λ3 = −0.0804, −λ4 ± iω4 = −1.390± 8.698i,

−λ5 ± iω5 = −2.912± 3.833i.

These eigenvalues are found to be remarkably insensitive to the value of δstab, varying
typically only in the second significant figure for δstab varying in the range (−2,−1).
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Figure 3. More details of the bifurcations occurring along the branch of limit cycles near: (a)
δstab ≈ −1.4; and (b) δstab ≈ −1.33. Bifurcation points computed include folds of limit cycles,
period-doubling (PD bifurcations and Neimark–Sacker (secondary-Hopf) bifurcations which give
rise to an invariant torus in the dynamics.

Hence we shall refer to E as being of saddle-focus type because the negative real
part eigenvalues closest to the imaginary axis are complex, whereas the unstable
eigenvalue is real. Moreover, the eigenvalues satisfy the inequality (in the notation
of Glendinning & Sparrow (1984)) δ = λ2/λ1 < 1. Hence Shil’nikov’s theory applies,
implying that in a neighbourhood of the homoclinic trajectory, there are chaotic
dynamics and infinitely many distinct periodic orbits (in the parlance of dynamical
systems theory, this dynamics is conjugate to a shift map on infinitely many symbols).
However, we cannot say that this chaotic dynamics is necessarily stable. In fact, for
the example here, they are probably not, since the linear dynamics near E has
divergence given by λ1 − 2λ2, which is positive and hence repulsive.
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Shil’nikov homoclinic dynamics 2249

Figure 4. (a) The curve of limit cycles plotted as period versus δstab. (b) More details near the
infinite-period limit δstab ≈ −1.32.

We can say more. Since δ < 1, the calculations in Glendinning & Sparrow (1984)
imply that a ‘primary’ periodic orbit undergoes precisely the same wiggly form of
period-versus-parameter variation as depicted in figure 4. As the curve undergoes
each successive pair of folds, so the periodic orbit gains an extra full wind in a
neighbourhood of the equilibrium E. Note that such windings are most evident in
the graphs of φ and θ in figure 5, which depicts the solution after many wiggles up
the curve; hence there are many oscillations of the graph around the value of E. The
fact that the winds are most noticeable in these variables is presumably because the
eigenvalues associated with the weakest stable eigenvectors, −λ2± iω2, point mostly
in the (φ, θ) direction.
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Figure 5. The eight components of a periodic orbit with period T ≈ 40 at δstab = −1.31852,
which approximates the (infinite-period) Shil’nikov homoclinic orbit.

The theory of Glendinning & Sparrow (1984, § 3.1.2) also predicts the asymptotic
shape of the wiggly curve. Let µ = δstab − δh

stab, where δh
stab is the parameter value of

the homoclinic orbit. Then let µL,R
i be the µ-value of the ith fold bifurcation, either

to the left (L) or right (R) (counting the fold with lowest period first). Finally, let
pi be the period of the period orbit at the ith intercept with µ = 0. Then we have

lim
i→∞

(pi+1 − pi) = π/ω2 = 0.6907, (3.1)

and

lim
i→∞

(µL,R
i+1/µ

L,R
i ) = exp(−2πλ2/ω2) = 0.9606. (3.2)

To test these limits against the numerical data, we take the two pairs of successive
fold points whose data are given in table 1. Between these pairs of folds are 10 others,
five left-folds and five right-folds. From the way these folds accumulate as the period
increases, by demanding that the rate of accumulation should be the same for left
and right, we obtain that δh

stab = −1.320176. This is the parameter value we use
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Table 1. Data at the 15th and 21st left- and right-fold points of the curve of periodic orbits
depicted in figure 4a

i L or R δstab µi period

21 R −1.318295 0.00188 35.5669
21 L −1.320646 −0.00047 35.0001
15 R −1.317527 0.00285 27.2933
15 L −1.320838 −0.00066 26.7510

in order to calculate µ. Using the data in table 1, we can calculate a numerically
observed value of pi+1 − pi twice by subtracting pL,R

15 from pL,R
21 and dividing by 12.

Thus, we obtain 0.6894 and 0.6874, which agree well with the theoretical limit (3.1)
as the period tends to infinity. Furthermore, we can calculate µL,R

21 /µL,R
15 and take the

sixth root to obtain expressions for µL,R
i+1/µ

L,R
i . Here we obtain 0.9445 and 0.9445,

which are close to their theoretical limit (3.2) as i→∞, although there is a slight
discrepancy.

This discrepancy may be to do with the fact that the calculations in Glendinning
& Sparrow (1984) rely on the approximation by a three-dimensional vector field,
spanned at E by the eigenvectors associated with λ1 and −λ2 ± iω2. This assumption
may be justified rigorously in the limit µ→ 0 by using the so-called ‘homoclinic
centre-manifold theorem’ of Sandstede (1998). However, the presence of another very
small stable eigenvalue, −λ3, may mean that µ has to be taken to be very small for
the three-dimensional approximation to be valid. This may also account for the
appearance of torus bifurcations along the lower limbs of the wiggly curve, which are
not present in the theoretical analysis.

This careful testing of the quantitative properties of the wiggly curve in figure 4,
over a tiny range of δstab values, may seem of little significance to practical questions
of aircraft dynamics. We have merely done this in order to demonstrate categorically
that the observed data imply that the Shil’nikov mechanism is at work. We shall
now turn to more practical questions of how this mechanism affects the aircraft’s
dynamics.

4. Aircraft simulation results

An existing six-DOF simulation of the F-4J was available for use in evaluating the
implications of the autorotation dynamics. This is coded in Simulink: a computer
program for simulation of dynamic systems that is an extension to MATLAB (Math-
Works Inc. 1993). Model definition is achieved via a block diagram representation,
by using a selection of library blocks, and MATLAB M-files. Several integration algo-
rithms are provided, a fifth-order variable-step explicit Runge–Kutta method being
used in the runs generated for this paper.

The use of this simulation to investigate the time response of the aircraft model
was of interest because: it was set up completely independently of the AUTO model,
by using the same equations and data but constructed differently; it uses linear
interpolation of the data tables (splines are used in AUTO); and it provides the
opportunity to observe the aircraft response to parameter sweeps, both quasi-static
and more rapid to represent real flight conditions.
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Figure 6. The first seven components of the motion (the forward velocity VT is approximately
constant throughout this and all subsequent runs), given the depicted variation of δstab. The
initial value of δstab is −1.9, where the autorotation equilibrium is stable, and the final value
is δstab = −1.5, where the limit cycle is stable. Initial conditions for this and all subsequent
runs are p = 254.0, q = −88.5, r = −2.47, α = −1.44, β = −19.22, φ = −91.6, θ = −70.78,
VT = 314.0.

As a result of the different data interpolations, the values of the state variables
and the parameter in the vicinity of the autorotation flight regime differ from that
of spline interpolation by approximately 3–4%. The value of p in stable autorotation
is about 254, as opposed to 265 for spline interpolation; and the value of δh

stab is
approximately −1.28 (against −1.320 from the AUTO results). This magnitude of
discrepancy was expected for solutions involving high rotation rates.

In figure 6, the simulation is initiated in the equilibrium region of the autorotation
branch, with δstab = −1.9; δstab is then increased slowly to a value of −1.5 which is
beyond the Hopf bifurcation and in the stable limit-cycle region. The time histories
confirm the presence of these two stable behaviours and hence the possibility for the
aircraft to enter into this very-high-roll-rate motion.

It is important in this study to be sure that the behaviour produced by the simu-
lation, using linear interpolation, is in fact topologically equivalent to that generated
in the numerical continuation runs. In figure 7, the initial conditions are identical
to that of figure 6 (as is the case for all the time histories shown in this paper) but
the parameter is fixed at δstab = −1.28145. This parameter value is found in the
simulations to be the limit of stable periodic motion near the autorotation branch
for these initial conditions. Increasing δstab by one in the fifth decimal place results in
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Figure 7. The eight components of motion at fixed δstab = −1.28145.

wildly different behaviour. Note from figure 7 that the observed limit cycle matches
closely those found in the continuation analysis approaching the homoclinic orbit
(figure 5). The limit cycle here is not quite homoclinic as it has developed only four
or so oscillations close to E rather than infinitely many (but do note that the tran-
sient in figure 7 appears much closer to being homoclinic). The precise mechanism for
loss of stability of limit cycles in the simulations may well be one of the bifurcations
(fold, period-doubling or torus) that the continuation analysis found to occur close
to the homoclinic orbit (see figure 3). Nevertheless, it would be fair to say that the
simulations indicate that the homoclinic orbit plays a strong role in the destruction
of the autorotation stable-limit-cycle behaviour.

In the event of an aircraft entering roll autorotation, the pilot will need to know
what control actions bring about a recovery to stable trimmed flight conditions.
Decreasing δstab will ensure that the fold bifurcation is encountered, such that the
autorotation branch ceases to exist and recovery to the stable symmetric branch is
effected (see figure 1). Now that the presence of the homoclinic bifurcation is known,
it is expected that recovery from autorotation can also be induced by increasing the
parameter. Such a case is shown in figure 8, where δstab is increased in steps from −1.9
to 0. Again, both the stationary point and the limit-cycle portions of autorotation
are evident; but once δstab exceeds a certain value (which is approximately −1.28144
under quasi-static conditions but is lower when the parameter increases at a finite
rate) the limit cycle quickly disappears and there is a jump to the symmetric trim
branch (running the simulation for longer, φ and θ do eventually damp out to their
expected steady states).
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Figure 8. The first seven components of the motion given the depicted variation of δstab.
The three constant values are δstab = −1.9, at which the autorotation equilibrium is stable;
δstab = −1.4, where there is a complex limit cycle; and δ = 0, which is after the autorotation
limit cycle has disappeared via the homoclinic orbit, but before the symmetric trim branch has
lost stability.

The behaviour exhibited in the time history in figure 8 conforms to the predic-
tions that could be made from figure 1, namely the likelihood of the jump to stable
equilibrium. Figure 1 also shows that for δstab > 2, the symmetric trim branch is no
longer stable. Any attempt by a pilot to escape from autorotation by increasing δstab
can be expected to result in an undesirable outcome should the increase in parameter
be too large. This is verified in the time histories in figure 9, which are identical to
those in figure 8 except that δstab is stopped at +2.5 instead of zero. The result is a
series of oscillations of extremely high amplitude in all variables, which will impose
severe loads on the aircraft and pilot. The nature of this behaviour appears to be
chaotic, probably arising from the interaction of two (or more) of the unstable equi-
libria evident in figure 1 at δstab = 2.5. Recovery from this highly undesirable state
to stable symmetric conditions has been shown (using simulation) to be possible by
moving δstab to a value less than two.

5. Discussion

The above results demonstrate the existence of stable autorotation in the F-4J model
and characterize its dynamic properties in terms of regions of equilibria and of sta-
ble periodic orbits. They also reveal the exact nature of the homoclinic bifurcation
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Figure 9. Similar to figure 8 but the final value of δstab = 2.5 is such that the symmetric trim
branch is no longer stable.

through which the limit cycle collides with a saddle-equilibrium point and disap-
pears. The conditions under which autorotation is possible are therefore clear, as are
the means of recovery via variation of the parameter δstab.

This type of analysis is clearly of benefit in understanding the flight dynamics
characteristics of an aircraft. The fidelity with which the aerodynamic model rep-
resents the actual aircraft is always of concern in such studies: there are likely to
be significant unsteady effects during these high-rate motions, particularly in the
oscillatory regions, which may not be faithfully captured in the F-4J mathematical
model. Nevertheless, it is known that many aircraft do possess an autorotation mode
and, since it is sustained by a balance between aerodynamic and inertial loads, the
results obtained for the F-4J model are likely to be a reasonable reflection of its roll
rotation dynamics.

The importance of the current study is that whatever level of accuracy of aero-
dynamic reactions is incorporated within the ODEs, numerical continuation can be
used to provide an in-depth understanding of the system dynamics. The application
of the technique in the context of homoclinic connections need not necessarily be
restricted to autorotation. Many aircraft possess oscillatory spin modes which are
periodic orbits, and it is conceivable that spin recovery could be effected by creating
the conditions for the limit cycle to collide with an unstable equilibrium branch,
possibly via the sort of ‘bifurcation tailoring’ proposed in Lowenberg (this issue). It
is also possible that the wing-rock limit cycle, which is common to most fighter air-
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craft, may in some situations end up in a homoclinic connection; the disappearance
of the limit cycle could then correspond to lateral-directional departure, which usu-
ally occurs if wing rock is permitted to continue to higher α. In this case, it would be
useful to tailor the phase portrait so as to move a saddle or saddle-focus equilibrium
further away from the limit cycle, thus delaying the homoclinic bifurcation. If this
were achievable, then wing rock could be extended over a wider operating region,
which might be advantageous since it is usually easier to control than departure.

In the case of the F-4J, the autorotation conditions may well persist under variation
of aileron δa: a longitudinal-axis control device used to induce roll motions. This
possibility deserves further investigation, since the phenomena observed in this paper
would then be of interest not purely in a restricted autorotative flight regime but over
a range of conditions in which high-roll-rate motion is demanded. There, knowledge
and possible tailoring of the behaviour of limit cycles around the equilibrium branch
may enable even higher roll-rate manoeuvres to be attempted.
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